Step of Proof: fast-fib |
11,40 |
|
Inference at * 2
Iof proof for Lemma fast-fib:
1.
n, a, b:
.
1. {m:
|
1. {
k:
. (a = fib(k)) 
((k
0) 
(b = 0)) 
((0 < k) 
(b = fib(k - 1))) 
(m = fib(n+k))}
n:
. {m:
| m = fib(n)}
by RenameVar `f' 1
1:
1: 1.
n, a, b:
.
1: 1. {m:
|
1: 1. {
k:
.
1: 1. {(a = fib(k)) 
((k
0) 
(b = 0)) 
((0 < k) 
(b = fib(k - 1))) 
(m = fib(n+k))}
1:
n:
. {m:
| m = fib(n)}
.